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Abstract. We present a model calculation for the temperature-dependent behaviour of surface
states on a ferromagnetic local-moment film. The film is described within the s–f model featuring
local magnetic moments being exchange coupled to the itinerant conduction electrons. The surface
states are generated by modifying the hopping in the vicinity of the surface of the film. In the
calculation for the temperature-dependent behaviour of the surface states we are able to reproduce
both Stoner-like and spin-mixing behaviour in agreement with recent (inverse) photoemission data
on the temperature-dependent behaviour of a Gd(0001) surface state.

In the recent past, many theoretical and experimental research works have been focused on
the intriguing properties of rare-earth metals and their compounds. On the experimental side,
this interest was aroused after Welleret al reported on the existence of the magnetically
ordered Gd(0001) surface at temperatures where the bulk gadolinium is paramagnetic [1].
Since then, a variety of different experimental techniques have been applied to the problem
by different groups yielding values of the surface Curie temperature enhancement,1TC =
TC(surface)−TC(bulk), between 17 K and 60 K [2–4]. Unlike the groups cited above, Donath
et al using spin-resolved photoemission did not find any indication for an enhanced Curie
temperature at the Gd(0001) surface [5], fuelling the controversial discussion.

As regards the interplay between electronic structure and exceptional magnetic properties
at the gadolinium surface, a Gd(0001) surface state [6,7] is believed to play a crucial role and
its temperature-dependent behaviour has been discussed intensively [5, 8–13]. Recently, the
investigation of the correlation between strain-induced alteration of the surface electronic
structure and enhanced magnetization in Gd films has been addressed by a number of
experimental works [13–16]. A thorough account on the surface magnetism and the surface
electronic structure of the lanthanides has been given by Dowbenet al [17].

Rare-earth materials are so-called local-moment systems, i.e. the magnetic moment stems
from the partially filled 4f shell of the rare-earth atom being strictly localized at the ion site.
Thus the magnetic properties of these materials are determined by the localized magnetic
moments. On the other hand, the electronic properties like electrical conductivity are borne
by itinerant electrons in rather broad conduction bands, e.g. 6s, 5d for Gd. Many of the
characteristics of local-moment systems can be attributed to a correlation between the localized
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moments and the itinerant conduction electrons. For this situation the s–f model has been
proven to be an adequate description. In this model, the correlation between localized moments
and conduction electrons is represented by an intra-atomic exchange interaction.

In what follows we consider a film consisting ofn equivalent parallel layers. The lattice
sites within the film are indicated by a Greek letter,α, β, γ, . . ., denoting the layer, and by
an italic letteri, j, k, . . ., numbering the sites within a given layer. Each layer possesses
two-dimensional translational symmetry, so for any site-dependent operatorAiα we have

〈Aiα〉 ≡ 〈Aα〉 .
The Hamiltonian for the s–f model consists of three parts:

H = Hs +Hf +Hsf . (1)

The first,

Hs =
∑
ijαβσ

T
αβ

ij c
+
iασ cjβσ (2)

describes the itinerant conduction electrons as s electrons withc+
iασ (ciασ ) being the creation

(annihilation) operator of an electron with the spinσ at the lattice siteRiα. TheT αβij are the
hopping integrals.

The second part of the Hamiltonian represents the system of the localized f moments and
itself consists of two parts:

Hf = −
∑
ijαβ

J
αβ

ij Siα · Sjβ −D0

∑
iα

(Sziα)
2 (3)

where the first is the well-known Heisenberg interaction. Here theSiα are the spin operators
of the localized magnetic moments, which are coupled by the exchange integrals,J

αβ

ij . The
second contribution is a single-ion anisotropy term which arises from the necessity of having a
collective magnetic order at finite temperatures,T > 0 [18]. This anisotropy has been assumed
to be uniform within the film. The corresponding anisotropy constantD0 is typically smaller
by some orders of magnitude than the Heisenberg exchange integrals,D0� J

αβ

ij .
In addition to the contribution of the s-electron system and the contribution of the localized

f moments we have a third term which accounts for an intra-atomic interaction between the
conduction electrons and the localized f spins:

Hsf = −J}
∑
iα

Siασiα (4)

whereJ is the s–f exchange interaction andσiα is the Pauli spin operator of the conduction
electrons. In the case whereJ < 0 the Hamiltonian (1) is that of the so-calledKondo lattice.
However, here we are interested in the case of positive s–f coupling (J > 0) which applies to
the materials that we are interested in. Using the abbreviations

Sσiα = Sxiα + izσS
y

iα z↑(↓) = ±1

the s–f Hamiltonian can be written in the form

Hsf = −J
2

∑
iασ

(zσ S
z
iαniασ + Sσiαc

+
iα−σ ciασ ). (5)

The problem posed by the Hamiltonian (1) can be solved by considering the retarded
single-electron Green function

G
αβ

ijσ (E) =
〈〈
ciασ ; c+

jβσ

〉〉
E
= −i

∫ ∞
0

dt e−(i/})Et
〈[
ciασ (t), c

+
jβσ (0)

]
+

〉
(6)
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which is related to the spectral densitySαβkσ (E) and the local density of statesρασ (E) via the
relations

G
αβ

kσ (E) =
1

N

∑
ij

eik·(Ri−Rj )G
αβ

ijσ (E) (7)

S
αβ

kσ (E) = −
1

π
ImG

αβ

kσ (E + i0+) (8)

ρασ (E) = 1

}N
∑
k

Sααkσ (E). (9)

Due to the translational symmetry of the films, the Fourier transformation (7) has to be
performed within the layers of the film. Accordingly,N is the number of sites per layer,
k is an in-plane wavevector from the first two-dimensional Brillouin zone, andRi represents
the in-plane part of the position vector,Riα = Ri + rα.

The many-body problem that arises with the Hamiltonian (1) is far from being trivial
and a full solution is lacking even for the case of the bulk. In a previous paper we have
presented an approximate treatment of the special case of a single electron in an otherwise
empty conduction band [19]. This solution, which holds for arbitrary temperatures, is based
on the special case of an empty conduction band interacting with a ferromagnetically saturated
local-moment system (T = 0), which can be solved exactly for both the bulk case and the film
geometry [20–23]. This exactly soluble limiting case gives the approximate solution for finite
temperatures a certain reliability.

In the following formulae, we briefly recall the results of the calculations presented
in [19, 23]. Due to the empty conduction band that we are considering throughout the whole
paper, the Hamiltonian (1) can be split into an electronic part,Hs +Hsf , and a magnetic part,
Hf , which can be solved separately [19]. For the electronic part:

Hel = Hs +Hsf (10)

we employ the single-electron Green function (6). The equation of motion for this Green
functionGαβ

ijσ (E) can be formally solved by introducing the self-energyMαβ

ijσ (E):〈〈
[ciασ ,Hsf ]−; c+

jβσ

〉〉
E
=
∑
mµ

M
αµ

imσ (E)G
µβ

mjσ (E) (11)

which contains all the information about correlation between the conduction band and the
localized moments. With the help of (11) the equation of motion for the single-electron Green
function simply becomes, after two-dimensional Fourier transformation,

Gkσ (E) = }(E I− Tk −Mkσ (E))
−1. (12)

Here, I represents the(n × n) identity matrix and the matricesGkσ (E), Tk, and Mkσ (E)

have as elements the layer-dependent functionsG
αβ

kσ (E), T
αβ

k , andMαβ

kσ (E), respectively.
The necessary computation of the self-energyM

αβ

kσ (E) involves the evaluation of higher
Green functions originating from the equation of motion of the original single-electron Green
function. For the sake of brevity we here omit the details of the calculations. If the self-energy
is assumed to be a local entity:

M
αβ

kσ (E) = −
J

2
δαβm

α
σ (E) (13)

it can be shown to have the structure

mασ (E) =
Zασ (E)

Nα
σ (E)

(14)
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where the numerator and the denominator, respectively have the following structure:

Zασ = zσ}2〈Szα〉 +
J

2
f Z1 (· · ·) +

J 2

4
f Z2 (· · ·) (15a)

Nα
σ = }2 +

J

2
f N1 (· · ·) +

J 2

4
f N2 (· · ·) (15b)

where the four functionsf Z,N1,2 (· · ·) themselves depend† on the self-energy,mα±σ (E), and on
the layer-dependent coefficients:

κασ = 〈S−σα Sσα 〉 − λ(2)ασ 〈Szα〉

λ(1)ασ =
〈S−σα Sσα S

z
α〉 + zσ 〈S−σα Sσα 〉
〈S−σα Sσα 〉

(16)

λ(2)ασ =
〈S−σα Sσα S

z
α〉 − 〈Szα〉〈S−σα Sσα 〉

〈(Szα)2〉 − 〈Szα〉2
.

Taking into account equations (12)–(16), we have now a closed system of equations, provided
that the f-spin correlation functions appearing in equations (16) are known.

These can be evaluated by considering the magnetic subsystem, according to the
HamiltonianHf (equation (3)). As regards what concerns us in this paper, it is only of
interest that, employing an RPA-type decoupling, a solution of the magnetic subsystem can be
found [18] and that it gives us all the necessary layer-dependent f-spin correlation functions
as a function of temperature fromT = 0 to the Curie temperature,T = TC [19]. Mediated by
equations (14)–(16), the f-spin correlation functions contain the whole temperature dependence
of the electronic subsystem.

To briefly recall the main results presented in our previous paper [19], in figure 1 we show
the density of states of a s.c. (100) double layer for different s–f interactions and different
temperatures. In the case of ferromagnetic saturation,T = 0, we see that for the spin-↑
electron the density of states of the free caseJ = 0 (dotted line) is just rigidly shifted when the
interaction is switched on. This is due to the impossibility of the spin-↑ electron exchanging
its spin with the perfectly aligned local-moment system. For the spin-↓ electron in the case
of small s–f exchange coupling,J > 0, a slight deformation of the free density of states sets
in. For intermediate and strong couplings (J & 0.2), the density of states splits into two parts,
corresponding to two different processes of spin exchange between the spin-↓ electron and
the localized f-spin system. The higher-energy part represents a polarization of the immediate
spin neighbourhood of the electron due to the repeated emission and reabsorption of magnons.
The corresponding polaron-like quasiparticle is called the magnetic polaron. The low-energy
part of the spectrum is a scattering band which can be explained by the simple emission of
a magnon by the spin-↓ electron without reabsorption, but necessarily connected with a spin
flip of the electron [23].

For T > 0 we see in figure 1 that with increasing temperature for the spin-↓ electron
spectral weight is transferred from the high-energy polaron peak to the low-energy scattering
peak. On the other hand, for the spin-↑ electron we have the effect that for finite temperatures
an additional peak rises on the high-energy side of the spectrum. This rise with increasing
temperature is fuelled by the loss of spectral weight of the low-energy peak. The high-energy
peak simply represents the ability of the spin-↑electron to exchange its spin with a not perfectly
aligned local-moment system,T > 0 [19]. As a result of the shifts of spectral weight occurring
for both the spin-↑ and spin-↓ spectra, the spectra for the two spin directions approach each
other with increasing temperature. In the limiting case ofT → TC the system has eventually

† For the explicit form of equations (15), see [19].
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Figure 1. The density of statesρσ (E) of a s.c. (100) double layer for different s–f interactions
J and different temperaturesT (in units of TC ). The dotted lines correspond to the case of
vanishing s–f interaction,J = 0, where there is no distinction between spin-↑ and spin-↓ electrons,
ρ↑(E) = ρ↓(E). The spectra for the increasing values of the s–f interaction,J = 0.1, 0.2, 0.3, 0.4,
can be associated with the increasing distances of their peaks from theJ = 0 spectrum.

lost its ability to distinguish between the two possible spin directions because of the loss of
magnetization of the underlying local-moment system. Hence, forT = TC the densities of
states of the spin-↓ and the spin-↑ electrons are equal. Another feature which can be seen in
figure 1 is that while the positions of the quasiparticle subbands stay pretty much the same we
observe a narrowing of the bands with increasing temperature. This can be seen especially
well for the case of the temperature evolution of the spectrum of the spin-↓ electron for the
case ofJ = 0.2. Whereas the scattering band and the polaron band are, for the case ofT = 0,
still merged, in the case ofT = TC the two bands are clearly separated.

In this paper we are interested in surface states and their temperature-dependent behaviour.
Surface states occur in the spectral density at energies different from the bulk energies and are
localized in the vicinity of the surface of a crystal. The theory presented above is applied to a
s.c. film consisting ofn layers oriented parallel to the (100) surface as shown schematically in
figure 2.

The electron hopping in equation (2) is restricted to nearest neighbours:

T
αβ

ij = δαβi,j±1T αα + δα,β±1
ij T αβ (17)

where1 stands for the nearest neighbours within the same plane,1 = (0, 1), (0, 1̄), (1, 0),
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Figure 2. A model of ann-layer film with s.c. structure. The nearest-neighbour hopping is assumed
to beT‖ within the surface layer,T⊥ between the surface layer and the layer nearest to the surface
layer, andT within and between inner layers.

(1̄, 0), andδαβij ≡ δαβδij . T αβ is the hopping between the adjacent layersα andβ, andT αα

is the hopping between nearest neighbours within the layerα. In order to study surface states
we vary the electron hopping in the vicinity of the surface:

T αβ =



T‖ T⊥ 0 · · · 0

T⊥ T T
...

0 T
. . .

. . . T 0
... T T T⊥
0 · · · 0 T⊥ T‖


(18a)

according to figure 2, and with

T‖ = ε‖T T⊥ = ε⊥T . (18b)

Here,ε‖ andε⊥ are considered as model parameters. In reality the variation of the hopping
integrals in the vicinity of the surface may be caused e.g. by a relaxation of the interlayer
distance. According to the scaling lawT ∼ r−5 for the d electrons [24], a relatively small
top-layer relaxation1r/r may result in a strong change of the hopping integralT . Thus e.g. a
relaxation of the Gd(0001) surface layer of 3–6% (cf. [25] and references therein) would yield
a modification of the hopping integrals of up to 30%.

In a previous paper we dealt with surface states for the exactly solvable case of a single
electron in an otherwise empty conduction band and a ferromagnetically saturated f-spin
system,T = 0 [26]. For this special case we have shown that modifying the hopping in
the vicinity of the surface according to equations (18) leads to the appearance of surface states
in the local spectral densitySααkσ . Modifying the hopping within the surface layer by more than
25%, i.e.ε‖ . 3

4 or ε‖ & 5
4, while keeping all the other hopping integrals unchanged, results

in a single surface state at the lower or the upper edge of the bulk band [26,27]. This surface
state first emerges at thē0 and at theM̄ point from the bulk band, and from there spreads for
larger modifications ofε‖ to the rest of the Brillouin zone.
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On the other hand, when the hopping within the first layer remains constant,ε‖ ≡ 1, but
the hopping between the first and the second layer is significantly increased,ε⊥ &

√
2, then

two surface states split off one on each side of the bulk band. In this case the emergence of the
surface states from the bulk band isk-independent. Both types of surface state for the special
case ofT = 0 can be observed at the single bulk band and on the high-energy polaron band
for the case of the spin-↑ electron and the spin-↓ electron, respectively.

Here, we are interested in the possible variations of theT = 0 surface states when going
to finite temperatures. Figures 3 to 5 show the temperature dependence of surface states for the
different possible variations of the hopping in the vicinity of the surface. All the calculations
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Figure 3. The local density of states,S11
kσ (E), of the first layer of a 20-layer s.c. (100) film at the

0̄ point and theM̄ point for both spin directions and different temperatures,T = 0, 0.7, 0.9, 1 (in
units ofTC ), and modified hopping within the first layer,ε‖ = 1.5, while ε⊥ ≡ 1. Upside down
but on the same scale, the local spectral density of a central layer,S10 10

kσ (E), is displayed for the
samek-points and spin directions.
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Figure 4. The local density of states,S11
kσ (E), of the first layer of a 20-layer s.c. (100) film at the

0̄ point and theM̄ point for both spin directions and different temperatures,T = 0, 0.7, 0.9, 1 (in
units ofTC ), and modified hopping within the first layer,ε‖ = 0.5, whileε⊥ ≡ 1.

for figures 3 to 5 have been performed for a 20-layer s.c. film cut parallel to the (100) plane of
the s.c. crystal. For films much thinner than 20 layers, the calculation of surface states becomes
meaningless since there is no real bulk-like environment in the centre of the film to compare the
electronic states at the surface to. So it is desirable to make calculations for thicker films for the
discussion of surface states. The chosen thickness of our model film is basically a compromise
between computational accuracy and computational time. The parameters for the uniform
hopping according to equations (18) and for the s–f exchange interaction areT = −0.1 and
J = 0.1, respectively.
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Figure 5. As figure 4, but for modified hopping between the first and the second layer,ε⊥ = 2,
while ε‖ ≡ 1.

For our calculations we have employed a modification of the hopping in the surface layer
and between the surface layer and the adjacent layer of 50% (ε‖ = 0.5, 1.5) and 100% (ε⊥ = 2),
respectively (cf. equation (18b)). Such a drastic modification of the hopping integrals in the
vicinity of the surface is rather unlikely to occur in reality. However, as has been shown in [26]
the actual peak position of a surface states depends only weakly on the variation ofε‖ andε⊥.
The selected strong variations of the hopping parametersT‖ andT⊥ give rise to pronounced
surface states which enable us to see more clearly the qualitative behaviour of the surface states
as a function of temperature.
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In figure 3 we have the case where the hopping within the surface layer is enhanced by
50%, leading to the existence of a surface state on the outer edge of the bulk dispersion. This
surface state can most clearly be seen at the0̄ point and theM̄ point in the two-dimensional
Brillouin zone. In figure 3, the spectral density of the first layer,S11

kσ (E), for each of these
points is displayed as a function of energy. If the temperature is increased, we see that the
positions of the spin-↑ and of the spin-↓ surface states approach each other in a Stoner-like
fashion until the two peaks are equivalent forT = TC . The oscillations in the spectral densities,
which can be seen in figure 3 around−0.6 eV, 0.3 eV, and 0.7 eV, are due to the finite thickness
of our model film, as are the respective oscillations in figures 4 and 5.

Also in figure 3, but upside down, the spectral density of one of the central layers of the
20-layer film,S10 10

kσ (E), can be seen again for thē0 point and theM̄ point and both spin
directions, indicating that the positions of the surface states visible inS11

kσ (E) lie outside of the
bulk spectrum of the crystal for all temperatures. The same is valid for the spectra displayed
in figures 4 and 5. In these figures, however, the local spectral densities of the central layers
have been omitted for clarity.

In figure 4, the temperature dependence of the surface states is documented for the case
where the hopping within the first layer is reduced by 50%,ε‖ = 0.5 (ε⊥ ≡ 1). In this case we
observe a spin-mixing behaviour where the positions of the spin-↑ and of the spin-↓ surface
states stay the same when the temperature is increased, but spectral weight is being transferred
between the different peaks. This results in equal populations of the spin-↓ and the spin-↑
peaks atT = TC .

To summarize the picture, we show in figure 5 the case where the hopping between the
first and the second layer is modified,ε⊥ = 2, while the hopping within the first layer remains
equal to the uniform hopping within the film,ε‖ ≡ 1. Here we have forT = 0 two surface
states, one on each side of the bulk spectrum. When the temperature is switched on, the surface
states on the outer side of the bulk dispersion behave in a Stoner-like fashion, while the surface
states on the inner side of the bulk dispersion exhibit a spin-mixing behaviour.

Apparently, our model is able to reproduce a Stoner-like collapse of the spin-↓ and
the spin-↑ peak positions forTC as well as a spin-mixing behaviour. In the spin-mixing
case there are two peaks which both have a majority-spin and a minority-spin contribution.
When the temperature is increased, the spectral weight of these contributions is altered until
for T = TC for each peak the spin-↓ and the spin-↑ contributions have the same spectral
weights.

In being able to reproduce both Stoner-like and spin-mixing behaviour, depending on the
variation of the hopping and the position in the Brillouin zone, our model calculations are in
harmony with more recent (inverse) photoemission studies on Gd(0001) films [11,12] which
abandoned the restriction imposed in earlier works that the temperature-dependent behaviour
of the Gd(0001) surface state has to be either Stoner-like or of spin-mixing type. In particular, it
has been shown here that for certain parameters it is possible to observe both kinds of behaviour
at the same time (see figure 5). This feature of our model calculation seems to be in strong
agreement with a scenario proposed by Donath and Gubanka [11].
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